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Abstract

We describe an approach to find an initial approximation to the thermal properties of
soil horizons. This technique approximates thermal conductivity, porosity, unfrozen wa-
ter content curve in horizons where no direct temperature measurements are available.
To determine physical properties of ground material, optimization-based inverse mod-5

eling techniques fitting the simulated and measured temperatures are commonly em-
ployed. Two major ingredients of these techniques is an algorithm to compute the soil
temperature dynamics and a procedure to find an initial approximation to the ground
properties. In this article we show how to determine the initial approximation to the
physical properties and present a new finite element discretization of the heat equa-10

tion with phase change to calculate the temperature dynamics in soil. We successfully
applied the proposed algorithm to recover the soil properties for Happy Valley site in
Alaska using one-year temperature dynamics. The determined initial approximation
was utilized to simulate the temperature dynamics over several consecutive years; the
difference between simulated and measured temperatures lies within uncertainties of15

measurements.

1 Introduction

Recently, the Arctic Climate Impact Assessment report (ACIA, 2004) concluded that
climate change is likely to significantly transform present natural environments, par-
ticularly across extensive areas in the Arctic and sub-Arctic. Among the highlighted20

potential transformations is soil warming which can potentially drive an increase in
the active layer thickness and degradation of permafrost as well as have broader im-
pacts on soil hydrology, northern ecosystems and infrastructure. Since permafrost
is widely distributed and covers approximately 25% of the land surface in the North-
ern Hemisphere (Brown et al., 1997), it is very important to understand driving forces25

affecting soil temperature regime. One of the approaches to study soil temperature
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dynamics and its dependence on climate variability is to employ mathematical mod-
eling (Goodrich, 1982; Nelson and Outcalt, 1987; Kane et al., 1991; Zhuang et al.,
2001; Ling and Zhang, 2003; Oleson et al., 2004; Sazonova et al., 2004; Molders and
Romanovsky, 2006)

A mathematical model of soil freezing/thawing is based on finding a solution of a5

non-linear heat equation over a certain domain, see (Andersland and Anderson, 1978;
Yershov, 1998) and many references therein. The domain represents ground mate-
rial which has several horizons (e.g. an organic matt, an organically enriched mineral
soil layer, and a mineral soil layer) with distinct properties characterized by mineral-
chemical composition, texture, porosity, heat capacity and thermal conductivity. By10

parameterizing coefficients in the heat equation within each horizon using properties
of the corresponding layer, it is possible to take into account temperature-dependent
latent heat effects occurring when ground freezes and thaws, and hence realistically
model temperature dynamics in soils. However, in order to produce quantitatively rea-
sonable results, it is necessary to prescribe physical properties of each horizon accu-15

rately. One of the ways to determine these properties is to complete certain laboratory
or field experiments (Zhang and Osterkamp, 1995; Yoshikawa et al., 2004). In both
cases, it is necessary to solve inverse problems where measured temperature and the
model are used to find the parameters within each soil layer.

There is a great number of inverse modeling techniques, but in this article we deal
with optimization techniques which fit model output to observations. These techniques
find properties C of all horizons by minimizing the cost function

J(C) ≈
∫ te
ts

(Tm(xi , t) − Tc(xi , t; C))2dt, (1)

which measures a discrepancy between the measured Tm and calculated Tc temper-20

atures (computed by the model with coefficients in the heat equation parameterized
using C) at some depths xi over the time interval [ts, te]. Commonly, the cost func-
tion J is minimized iteratively starting from an initial approximation to the parameters
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C (Thacker and Long, 1988). Since the heat equation is non-linear, in general there
are several local minima. Hence, it is important that the initial approximation lies in the
basin of attraction of a proper minimum (Avriel, 2003).

In this article, we present an semi-heuristic algorithm to determine the initial approx-
imation, in order to use it as the starting point in multivariate minimization problems5

such as (1). We construct the initial approximation by using in-situ measured temper-
ature and by minimizing cost functions on specifically selected time intervals [ts, te]
and also in a certain order. For example, first, we propose to find thermal conductivity
of the frozen soil using the temperature collected during winter, and then use these
values to find properties of the thawed soil. In order to minimize the cost function it is10

necessary to compute the temperature dynamics multiple times for various C. Since
an analytical solution of the non-linear heat equation is not generally available, we use
a finite element method to find its solution. To compute latent heat effects, we propose
a new fixed grid technique to evaluate the so-called latent heat terms in the so-called
mass (compliance) matrix using enthalpy formulation. Our techniques does not rely on15

temporal or spatial averaging of enthalpy, but rather evaluate integrals directly by em-
ploying a certain change of variables. An advantage of this approach is that it allows
reductions of the numerical oscillation during evaluation of the temperature dynamics
at locations near 0◦C isotherm.

The structure of this article is as follows. In Sect. 2, we describe a commonly used20

mathematical model of temperature changes in the active layer and near surface per-
mafrost. In Section 3, we give a brief review of existing field methods of finding the
thermal properties and unfrozen water content. Also, in this section we introduce main
definitions and notations. In Sect. 4, we outline a finite element discretization of the
heat equation with phase change. In Sect. 5, we provide an algorithm to construct an25

initial approximation to thermal properties. In Section 6, we outline global minimization
of the cost function. In Sect. 7, we apply our method to estimate the thermal properties
and the coefficients determining the unfrozen water content at a site located in Alaska.
Finally, in Sect. 8 we present limitations and shortcomings of the proposed algorithm.
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2 Modeling of soil freezing and thawing

For many practical applications, heat conduction is a dominant process, and hence the
soil temperature T, [◦C] can be simulated by a 1-D heat equation with phase change
(Carslaw and Jaeger, 1959):

C
∂
∂t
T (x, t) + L

∂
∂t
θl (T, x) =

∂
∂x
λ
∂
∂x
T (x, t), (2)

where x∈[0, l ], t∈[0, τ]; the quantities C=C(T, x) [Jm−3K−1] and λ=λ(T, x) [Wm−1K−1]
stand for the volumetric heat capacity and thermal conductivity of soil, respectively;
L [Jm−3] is the volumetric latent heat of fusion of water, and θl is the volumetric water
content. We note that this equation is applicable when migration of water is negligible,5

there are no internal sources or sinks of heat, frost heave is insignificant, and there are
no changes in topography and soil properties in lateral directions. Typically, the heat
Eq. (2) is supplemented by boundary conditions specified at the ground surface, x=0,
and at the depth l (Carslaw and Jaeger, 1959). For example, the boundary conditions
can be given by T (0, t)=Tu(t), T (l , t)=Tl (t), where Tu and Tl are some functions of time10

and represents temperature at the ground surface and at the depth l , respectively. In
order to calculate the temperature dynamics T (x, t) at any time t ∈ [0, τ], Eq. (2) is
supplemented by an initial condition, i.e. T (x,0)=T0(x), where T0(x) is the temperature
at x ∈ [0, l ] at time t=0.

In certain conditions such as waterlogged Arctic lowlands, soil can be considered a
porous media fully saturated with water. The fully saturated soil is a multi-component
system consisting of soil particles, liquid water, and ice. It is known that the energy of
the multi-component system is minimized when a thin film of liquid water (at tempera-
ture below 0◦C) separates ice from the soil particles (Hobbs, 1974). A film thickness
depends on soil temperature, pressure, mineralogy, solute concentration and other
factors (Hobbs, 1974). One of the commonly used measures of liquid water below
freezing temperature is the volumetric unfrozen water content (Williams, 1967; An-
derson and Morgenstern, 1973; Osterkamp and Romanovsky, 1997; Watanabe and
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Mizoguchi, 2002). It is defined as the ratio of liquid water volume in a representa-
tive soil domain at temperature T to the volume of this representative domain and is
denoted by θl (T ). In the fully saturated soil θl (T ) can be parameterized by a power
function θl (T )=a|T |−b;a, b>0 for T<T∗<0◦C (Lovell, 1957). The constant T∗ is called the
freezing point depression (Hobbs, 1974), and from the physical point of view it means
that ice does not exist in the soil if T>T∗. In thawed soils (T>T∗), the amount of water
in the saturated soil is equal to the soil porosity η, and hence the function θl (T ) can be
extended to T>T∗ as θl (T )=η. Therefore, we assume that

θl (T, x)=η(x)φ(T, x), φ=
{

1, T ≥ T∗
|T∗|

b|T |−b, T < T∗
, (3)

where φ=φ(T, x) represents the soil saturation. Note that the constants T∗ and b are
the only parameters that specify dependence of the unfrozen liquid water on temper-
ature. For example, small values of b describe the liquid water content in some fine-
grained soils, whereas large values of b are related to coarse-grained materials in
which almost all water freezes at the temperature T∗. The limiting case in which all5

water freezes at the temperature T∗ is associated with phase change between water
and ice (no soil particles). This limiting case is commonly called the classical Stefan
problem and is represented by extremely large values of b in (3).

In this article, we use the following notation and definitions. We abbreviate by letters
i , l and s, ice, liquid water, and the soil particles, respectively. We express thermal
conductivity λ of the soil and its apparent volumetric heat capacity Capp according to
(de Vries, 1963; Sass et al., 1971) as

λ(T )=λ
θs
s λ

θi (T )
i λθl (T )

l , Capp(T )=C(T )+L
dθl (T )

dT
(4)

C(T ) = θi (T )Ci + θl (T )Cl + θsCs (5)
218
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where C is called the volumetric heat capacity of the soil. Here, the constants Ck , λk ,
k∈{i , l , s} are the volumetric heat capacity and thermal conductivity of the k-th con-
stituent, respectively. The quantity θk , k∈{i , l , s} is the volume fraction of each con-
stituent. Exploiting the relations θs=1−η and θi=η−θl , we introduce notation for the
effective volumetric heat capacities Cf and Ct, and the effective thermal conductivities
λf and λt of soil for frozen and thawed states, respectively. Therefore formulae (4) and
(5) yield

Capp=C+L
dθl
dT

, C=Cf (1−φ)+Ctφ, λ=λ1−φ
f λφt , (6)

where

λf=λ
1−η
s ληi , λt=λ

1−η
s ληl

Cf=Cs(1−η)+Ciη, Ct=Cs(1−η)+Clη.

For most soils, seasonal deformation of the soil skeleton is negligible, and hence tem-
poral variations in the total soil porosity η for each layer are insignificant. Therefore,
the thawed and frozen thermal conductivities for the fully saturated soil satisfy

λt
λf

=
[λl
λi

]η
. (7)

It is important to emphasize that evaporation from the ground surface and from within
the upper organic layer can cause partial saturation of upper soil horizons (Hinzman
et al., 1991; Kane et al., 2001). Therefore, formula (7) need not hold within live veg-
etation and organic soil layers, and possibly within organically enriched mineral soil
(Romanovsky and Osterkamp, 1997).5

In this article, we approximate the coefficients Capp, λ according to (6), where the
thermal properties λf , λt, Cf , Ct and parameters η, T∗, b are constants within each soil
horizon. Table 1 lists typical soil horizon geometry, commonly occurring ranges for the
porosity η, thermal conductivity λf and the values of b parameterizing the unfrozen
water content.10

219

http://www.the-cryosphere-discuss.net
http://www.the-cryosphere-discuss.net/1/213/2007/tcd-1-213-2007-print.pdf
http://www.the-cryosphere-discuss.net/1/213/2007/tcd-1-213-2007-discussion.html
http://www.egu.eu


TCD
1, 213–269, 2007

Estimation of thermal
properties of

saturated soils

D. J. Nicolsky et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

3 Review of existing methods utilized to estimate soil physical properties and
a short description of our approach

Conventional Time Domain Reflectometry (Topp et al., 1980) and drying methods are
commonly used to estimate soil water content at shallow depths. The Time Domain
Reflectometry method is based on measurements of the apparent dielectric constant5

around a wave guide inserted into the soil. It has been demonstrated that there is a
relationship between the apparent dielectric constant and liquid water content (Topp
et al., 1980) enabling robust estimations of water content in shallow soils with homo-
geneous composition. There are some difficulties however in measuring θl of coarsely
textured, heterogeneous or organically enriched soils in Arctic tundra (Boike and Roth,10

1997; Yoshikawa et al., 2004). More accurate measurements of the total water con-
tent (ice and water together) can be accomplished by thermalization of neutrons and
gamma ray attenuation. This is not always suitable for Arctic regions as it requires
transportation of radioactive equipment (Boike and Roth, 1997). An alternative to the
above-mentioned methods and also to a number of others (Schmugge et al., 1980;15

Tice et al., 1982; Ulaby et al., 1982; Stafford, 1988; Smith and Tice, 1988) is inverse
modeling techniques. These techniques estimate the water content and other ther-
mal properties of soil using in-situ temperature measurements and by exploiting the
mathematical model (2).

A variety of inverse modeling techniques that recover the thermal properties of soil20

are known. Many of them rely on the commonly called source methods (Jaeger and
Sass, 1964), where a temperature response due to heating by a probe is measured at a
certain distance away from the probe. The temperature response and geometry of the
probe are used to compute the thermal properties by either direct or indirect methods.
In the direct methods, the temperature measurements are explicitly used to evaluate25

the thermal properties. In the indirect methods, one minimizes a discrepancy between
the measured and the synthetic temperatures, the latter computed via a mathematical
model for certain values of the thermal properties.
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Application of direct methods such as the Simple Fourier Methods (Carson, 1963),
Perturbed Fourier Method (Hurley and Wiltshire, 1993), and the Graphical Finite Dif-
ference Method (McGaw et al., 1978; Zhang and Osterkamp, 1995; Hinkel, 1997) to
estimate coefficients in (2) yield accurate results for the thermal diffusivity λ/C, only
when the phase change of water does not occur. Despite the fact that the direct meth-5

ods are well established for the heat equation without the phase change, no universal
framework exists in the case of the soil freezing/thawing because the heat capacity
Capp(T ) and thermal conductivity λ(T ) in this case depend strongly on the temperature
T in the heat Eq. (2).

A common implementation of the indirect methods uses an analytical or numerical10

solution of the heat Eq. (2) to evaluate the synthetic temperature. Due to strong non-
linearities, the analytical solution of (2) is known only for a limited number of cases
(Gupta, 2003), while the numerical solution is typically always computable. Given a nu-
merical solution computed by finite difference (Samarskii and Vabishchevich, 1996) or
finite element (Zienkiewicz and Taylor, 1991) methods, one can minimize a cost func-15

tion describing the discrepancy between the measured and synthetic temperatures.
The cost function is commonly defined as a sum of squared differences between the
calculated and measured temperatures at the several depths and is used to implicitly
evaluate the thermal properties (Alifanov et al., 1996). Mathematically, this method can
be stated as follows.20

We define the control C as a set consisting of thermal conductivities λ(i )
t , λ

(i )
f , heat

capacities C(i )
t , C

(i )
f and parameters η(i ), T (i )

∗ , b
(i ) describing the unfrozen water content

for each soil horizon i=1, . . . , n, or

C = {C(i )
f , C

(i )
t , λ

(i )
t , λ

(i )
f , η

(i ), T (i )
∗ , b

(i )}ni=1, (8)

where n is the total number of horizons. We say that a solution of the direct problem
for the control C is T (x, t; C) and is defined by the set

T (x, t; C) = {T (xi , t) : i = 1, . . . ,m; t ∈ [0, τ]}, (9)
221
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where xi are some fixed distinct points on [0,l ]. In (9), the T (xi , t) are point-wise values
of temperature distributions satisfying (2) in which thermal properties of each horizon
are given according to C.

The so-called counterpart of T (x, t; C) is the data TD(x, t) defined by a set of mea-
sured temperature at the same depths {xi}

m
i=1 and the same time interval [0, τ]. Since

the data TD(x, t) and its model counterpart T (x, t; C) are given on the same set of
depths and time interval, we can easily compute a discrepancy between them, usually
measured by the cost function

J(C)=
1

m(ts−te)

m∑
i=1

1

σ2
i

∫ te
ts

(TD(xi , t)−T (xi , t; C))2dt. (10)

Here, ts, te ∈ [0, τ] and σi stands for an uncertainty in measurements by the i -th sensor.
In our measurements all temperature sensors assume the same precision, so all of {σi}5

are equal. Given a way to measure this discrepancy as in (10) we can finally formulate
an inverse problem.

For the given data TD(x, t), we say that the control C∗ is a solution to an inverse
problem if discrepancy between the data and its model counterpart evaluated at C∗ is
minimal (Alifanov, 1994; Alifanov et al., 1996; Tikhonov and Leonov, 1996). That is,

C∗ = argmin
C
J(C).

To illustrate steps which are necessary to solve this inverse problem and find an optimal
C∗ we provide the following example. To formulate the inverse problem one has to have
the measured temperatures TD(x, t). For the sake of this example, we replace the data
TD(x, t) by a synthetic temperature TS(x, t)=T (x, t; C′) (a numerical solution of the heat
Eq. (2) for the known combination C

′ of the thermal properties):

C′=

{
C(1)
f =1.6·106, C(1)

t =2.1·106, λ(1)
f =0.55, λ(1)

t =0.14, η(1)=0.30, b(1)=−0.9, T (1)
∗ =−0.03

C(2)
f =1.7·106, C(2)

t =2.3·106, λ(2)
f =0.90, λ(2)

t =0.66, η(2)=0.30, b(2)=−0.6, T (2)
∗ =−0.03

C(3)
f =1.8·106, C(3)

t =2.6·106, λ(3)
f =1.90, λ(3)

t =1.25, η(3)=0.25, b(3)=−0.8, T (3)
∗ =−0.03

}
.
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The initial and boundary conditions in all calculations are fixed and given by in-situ
temperature measurements in 2001 and 2002 at the Happy Valley site located in the
Alaskan Arctic. We compute the temperature dynamics for a soil slab with dimensions
[0.02,1.06] between 21 July 2001 and 6 May 2002, and evaluate the cost function
at {xi}i={0.10, 0.17, 0.25, 0.32, 0.40, 0.48, 0.55, 0.70, 0.86} meters. Uniformly dis-5

tributed noise on [−0.04,0.04] was added to TS(x, t), to simulate noisy temperature
data recorded by sensors (precision of the sensor is 0.04◦C).

Given the synthetic data TS(x, t), we can find a best choice of parameters to min-
imize the cost function J defined by (10), where TD(x, t)=TS(x, t). For the sake of
simplicity, we assume that all parameters in the controls C

′ are known except for the10

pair λ(2)
f ,η

(3). Therefore, the problem of finding this pair can be solved by minimizing
the two-parameter-dependent cost function as follows. First, we compute tempera-
ture dynamics for all possible combinations of λ(2)

f ,η
(3) on a discrete grid of values of

these parameters. Second, for each combination of the pair, we evaluate the cost func-
tion J(C) and plot its isolines on (λ(2)

f ,η
(3)) plane. Finally, at the third step, we look for15

a minimum of the cost function and determine a location of its minimum. The point
on (λ(2)

f ,η
(3)) plane where the cost function is minimal gives the sought values of λ(2)

f

and η(3). Figure 1 shows typical contours of the isolines in the vicinity of the unique
minimum. We see that the location of the minimum coincides with values λ(2)

f =0.9,

η(3)=0.25, which were used to generate the synthetic data.20

In the above example, the control had only two unknown variables λ(2)
f , η

(3) and we
minimized the corresponding cost function. Usually, a majority of variables in the con-
trol C is unknown, and hence multivariate minimization is required. Since computation
of the cost function for all possible realizations of the control on the discrete grid is
extremely time-consuming, various iterative techniques are used (Fletcher, 2000). In25

any iterative technique, an initial approximation to the variables is needed, and the
choice of the initial approximation is extremely important to save computational time
and increase accuracy. For instance, if the cost function has several minima due to
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non-linearities of the heat Eq. (2) and if the initial approximation is arbitrary then the
iterative algorithm can converge to an improper minimum. Nevertheless, with the initial
approximation/guess within the basin of attraction of the global minimum, the itera-
tive optimization method should converge to the proper minimum even if the model is
nonlinear (Thacker, 1989). To estimate the thermal properties uniquely (a unique min-5

imum), the boundary conditions must satisfy some requirements, e.g.be monotonous
functions of time (Muzylev, 1985). In nature, rapidly changing weather conditions drive
the surface temperature which does not fulfil the necessary requirements for existence
of the unique minimum. Consequently, proper determination of an initial approximation
is extremely important. In addition to the proper determination of the initial approxima-10

tion, it is also important to compute the temperature dynamics for various combinations
of thermal properties with high efficiency. In the next two following sections, we pro-
pose a new highly efficient numerical method for solving the heat equation and provide
a recipe for the selection of an initial approximation.

4 Solution of the heat equation with phase change15

4.1 A review of numerical methods

In order to solve the inverse problem one needs to compute a series of direct problems,
i.e. to obtain the temperature fields for various combinations of thermal properties.
A number of numerical methods (Javierre et al., 2006) exist to compute temperature
that satisfies the heat equation with phase change (2). These methods vary from20

the simplest ones which yield inaccurate results to sophisticated ones which produce
accurate temperature distributions. The highly sophisticated methods explicitly track a
region where the phase change occurs and produce a grid refinement in its vicinity, and
therefore take significantly more computational time to obtain temperature dynamics.
Implementing such complicated methods is not always necessary, since an extremely25

accurate solution is not particularly important when the mathematical model describing
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nature is significantly simplified.
In this subsection, we briefly review several fixed grid techniques (Voller and Swami-

nathan, 1990) that accurately estimate soil temperature dynamics and easily extend
to multi-dimensional versions of the heat Eq. (2). These methods provide the solution
for arbitrary temperature-dependent thermal properties of the soil and do not explicitly
track the area where the phase change occurs. Recall that in soils the phase change
occurs at almost all sub-zero temperatures. A cornerstone of the fixed grid techniques
is a numerical approximation of the apparent heat capacity Capp. A variety of the ap-
proximation techniques can be found in (Voller and Swaminathan, 1990; Pham, 1995)
and references therein. In general, two classes of them can be identified. The first
class is based on temperature/coordinate averaging (Comini et al., 1974; Lemmon,
1979) of the phase change. Here, the apparent heat capacity is approximated by

Capp =
∂H
∂x

(∂T
∂x

)−1
, (11)

where

H =
∫ T
0
CappdT,

is the enthalpy. The second class of methods is based on temperature/time averaging
(Morgan et al., 1978). In this approach,

Capp =
Hcurrent − Hprevious

Tcurrent − Tprevious
, (12)

where subscripts mark time steps at which the values of H and T are calculated. Al-
though these methods have been presented in the context of large values of b in (3),
it is noted that they work best in the case of a naturally occurring wide phase change
interval. Also, it is important to note that the approximation (11) is not accurate for5
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near zero temperature gradients. In the case when the boundary conditions are given
by natural climate variability (several seasonal freezing/thawing cycles), near zero gra-
dients at some depths may occur for some time intervals. Hence, the temperature
dynamics calculated by using (11) can have large computational errors.

An alternative fixed grid technique can be developed by rewriting the heat equation
(2) in a new form:

∂H
∂t

=
∂
∂x
λ
∂
∂x
T, T = T (H), (13)

resulting in the enthalpy diffusion method (Mundim and Fortes, 1979). Advantages of5

discretizing (13) is that the temperature T=T (H) is a smooth function of enthalpy H and
hence one can compute all partial derivatives. However, for soils with a sharp boundary
between thawed and completely frozen states, the enthalpy H becomes a multivariate
function when temperature T nears T∗. Therefore, solution of (13) results in that the
front becomes artificially stretched over at least one or even several finite elements.10

In this article, we propose a fixed grid method that uses the standard finite element
method. Application of the standard finite element method to the left hand side of (2)
results in∫ x1

x0

ψ(x)
dθl
dT

(T (x, t))dx,

where ψ(x) is a product of two finite element basis functions, and T (x, t) is the temper-
ature at the point x and time t. We propose to evaluate this type of integrals using the
unfrozen liquid water content θl as the integration variable, i.e.∫ x1

x0

ψ(x)
dθl
dT

(T (x, t))dx =
∫ θ1

θ0

ψ(T (θl , t))dθl , (14)

where θ0 = θl (T (x0, t)) and θ1 = θl (T (x1, t)). This substitution allows precise compu-
tation of the latent heat effect for arbitrary grid cells, since it is parameterized by the
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limits of integration θ0, θ1, instead of being calculated using the rapidly varying function
dθl
dT (T ) on the element [x0, x1] by a quadrature rule. To apply the proposed substitution,
the function T (θl ) must be monotonically increasing for all θl<η. Figure 2 shows two in-
stances of the unfrozen water content curves frequently occurring in nature. The curve
marked by circles is associated with soils in which free water freezes prior to freezing5

of the bound liquid water in soil pores. The free water is associated with a vertical line
at T=T∗ whereas the bound water is represented by a smooth curve at T<T∗. The curve
marked by triangles reflects soil in which all water is bounded in soil pores and can be
parameterized by (3) used in our modeling.

4.2 Finite element formulation10

Let us consider a triangulation of the interval [0, l ] by a set of nodes {xi}
n
i=1. With each

node xi , we associate a continuous function ψi (x) such that ψi (xj ) = δi j . We will refer
to {ψi}

n
i=1 as the basis functions on the interval [0, l ]. Hence, the temperature T (x, t) on

[0, l ] is approximated by a linear combination: T (x, t)=
∑n
i=1 Ti (t)ψi (x), where Ti=Ti (t)

is the temperature at the node xi at the time t. Substituting this linear combination into
(2), multiplying it by ψj and then integrating over the interval [0, l ], we obtain a system
of differential equations (Zienkiewicz and Taylor, 1991):

M(T)
d
dt

T(t) = −K(T)T(t), (15)

where T≡T(t)=[T1(t) T2(t) . . . Tn(t)]
t is the vector of temperatures at nodes {xi}

n
i=1 at

time t. Here, the n×n matrices M(T)={mi j}
n
ij=1 and K(T)={ki j}

n
ij=1 are mass and stiff-

ness matrices, respectively. Entry-wise they are defined as

mi j=
∫ l
0
C(T, x)ψiψjdx+L

∫ l
0

dθl
dT

ψiψjdx (16)

ki j=
∫ l
0
λ(T, x)

dψi
dx

dψj
dx

dx. (17)
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The fully implicit scheme is utilized to discretize (15) with respect to time. Denoting by
dtk the time increment at the k-th moment of time tk , one has[
Mk + dtkKk

]
Tk = MkTk−1, k > 1 (18)

where Tk=T(tk), Kk=K(Tk), Mk=M(Tk). We impose boundary conditions at x=0 and
some depth x=l by specifying T1(tk)=Tu(tk) and Tn(tk)=Tl (tk).

Given Tk−1, we find the solution Tk of (18) by Picard iteration. The iteration process
starts from the initial guess Tk0=Tk−1 that is used to compute temperature Tk1 at the
first iteration. At iteration s, we compute Tks and terminate iterations at se when a
certain convergence condition is met. The value of Tks is used to evaluate the matrices
Mk

s=M(Tks ), and Kks=K(Tks ). In turn, these are utilized to compute the s + 1 iteration
Tks+1 by equating

[Mk
s + dtkKks]T

k
s+1 − Mk

sT
k−1 = 0. (19)

At each iteration the convergence condition maxk |T
s+1
k (tk) − T sk (tk)| ≤ ε is checked.

If it hold, the iterations are terminated at se=s+1. If the number of iterations exceeds
a certain predefined number, the time increment dtk is halved and the iterations start5

again. Please, note that the convergence is guaranteed if the time increment dtk is
small enough.

4.3 Computation of the mass matrix

One of the obstacles to obtain a finite dimensional approximation that accurately cap-
tures the temperature dynamics is related to evaluation of the mass matrix M. Since
the basis function ψi does not vanish only on the interval [xi−1, xi+1], the matrix M is
tri-diagonal. Therefore, to compute its i -th row we evaluate∫ l
0

dθl
dT

ψj (x)ψi (x)dx j = i − 1, i , i + 1, (20)
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where j stands for the column index. For the sake of brevity, we consider the first
integral (j=i−1) in (20). This restricts us only to the grid element [xi−1, xi ], yielding∫ l
0

dθl
dT

ψi−1(x)ψi (x)dx =
∫ xi
x−1

dθl
dT

ψi−1(x)ψi (x)dx. (21)

We recall that in the standard finite element method, the temperature on the interval
[xi−1xi ] is approximated by

T (x, t)=ψi−1(x)Ti−1(t)+ψi (x)Ti (t), (22)

for any x ∈ [xi−1, xi ] and fixed moment time t. Here, ψi and ψi−1 are piece-wise linear
functions satisfying ψi−1=1−ψi on [xi−1, xi ]. For all x ∈ [xi−1, xi ], we can compute
the temperature T from (22) and values of Ti , Ti−1. Note that in the case of ∆Ti=0,
we can compute (21) directly since dθl/dT is constant over [xi−1xi ]. However, if
∆Ti=Ti−Ti−1 6= 0, then we can consider an inverse function, that is, x is taken as a
function of T to obtain∫ xi
xi−1

dθl
dT

ψi−1ψidx =
xi − xi−1

(∆Ti )3

∫ xi
xi−1

dθl
dT

(Ti − T )(T − Ti−1)dT

Therefore∫ l
0

dθl
dT

ψi−1ψi dx =
xi − xi−1

(∆Ti )3

∫ θi
θi−1

(T − Ti )(Ti−1 − T )dθ, (23)

where θi−1=θl (T (xi−1, t)) and θi=θl (T (xi , t)). Note that in (23) the temperature T is
a function of the liquid water content θl , i.e. T=θ−1

l (θl ). Therefore, returning back to
(20), we have that each of the integrals in (20) is a linear combination of the type
β2A2 + β1A1 + β0A0, where

Ak =
∫ θi
θi−1

[θ−1
l (z)]kdz, k = 0,1,2.

The constants {βk} are easily computable if θl (T ) is given by (3).
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4.4 Evaluation of the proposed method

To test the proposed method, we compare temperature dynamics computed by the
proposed method with an analytical solution of the heat Eq. (2) in which b→∞. This
analytical solution is called Neumann solution (Gupta, 2003) and is typically used to
verify numerical schemes. In the proposed numerical scheme the mass matrix M is
tri-diagonal, and hence this scheme is called consistent. Other commonly utilized nu-
merical schemes are called mass lumped (Zienkiewicz and Taylor, 1991) since they
employ the diagonal mass matrix:

M = diag(Capp,1

∫ 1

0
ψ1dx, . . . , Capp,n

∫ 1

0
ψndx). (24)

Here, Capp,i is the value of the apparent heat capacity Capp at the i−th node computed
either by spatial (11) or temporal (12) averaging of latent heat effects.

In Fig. 3, we compare temperature dynamics computed by the proposed consistent
and a typical mass lumped scheme. We plot a location of the 0◦C isotherm for several5

spatial discretizations, i.e. the distance ∆xi between two neighboring nodes xi and
xi−1 is 0.1 or 0.01 meter. In this figure we see that the location of the 0◦C isotherm
calculated by numerical schemes lies within ∆xi bound near the analytical solution.
However, temporal dynamics of the location of the 0◦C isotherm differ among meth-
ods. In the solution (squares) computed by the mass lumped approach with temporal10

enthalpy averaging (TA), dynamics of the 0◦C isotherm has some irregularities, i.e. the
freezing front either advancing too fast or too slow. In average, however this algo-
rithm produces good results. Our proposed consistent method (circles) gives a better
solution and smoother rate of advancing of the 0◦C isotherm, see Fig. 3, left.

In Fig. 4, we compare temperature dynamics computed by two mass lumped ap-15

proaches exploiting spatial (11) and temporal (12) enthalpy averaging. A warm bias in
the temperature computed by the spatial averaging of the enthalpy is due to compu-
tational errors occurring when the temperature gradient is approximately zero at some
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depth. Our experience shows that this difference appears regardless of decreasing
the tolerance ε between iterations in (19). We note that in all above numerical exper-
iments a finite element computer code is the same except for a part associated with
computation of mass matrix, i.e. consistent (20) or mass lumped (24). These numerical
experiments show that the straight-forward mass lumped schemes are typically inferior5

to consistent ones.
Since our method (16) is based on the consistent approach (the mass matrix M is

the tri-diagonal one), the numerical solution oscillates if the time steps dtk are too
small (Pinder and Gray, 1977). For a fixed time step dtk , the oscillations disappear if
the spatial discretization becomes fine. It is shown that these oscillations occur due
to violation of the so-called discrete maximum principle (Rank et al., 1983). Therefore,
to avoid the oscillations in the numerical solution (Dalhuijsen and Segal, 1986), we
propose either to use sufficiently large time steps (for which the formula can be found
in the above cited references) or to exploit the following regularization. We construct a
lumped version M̃={m̃i j} of the mass matrix M given by

m̃i j =
∑
j

mi j (25)

and substitute M̃ for M in (18). Comparison of temperature dynamics computed em-
ploying the proposed consistent M defined by (18) and its mass lumped modification
M̃ defined by (25) is shown in Fig. 5. The numerical oscillations near 0◦C disappear
in the temperature dynamics computed by the proposed mass lumped approach (see10

Fig. 5). In Fig. 6, we compare the proposed mass lumped approach (stars), and the one
based on temporal enthalpy averaging (squares) by (11). This figure shows that the
numerical scheme using temporal averaging of the enthalpy produces larger oscillation
than our solution. This comparison reveals that the proposed mass lumped approach
(25) reduces some numerical oscillations and follows the “exact” solution (computed15

by the consistent approach with a very fine spatial discretization) more closely than the
solution computed by the lumped approach exploiting (11).
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In conclusion, we state that if a spatial discretization is fine and time steps are suf-
ficiently large (Pinder and Gray, 1977) then the consistent schemes do not show nu-
merical oscillations, and hence they should be utilized. In the case of a coarse spatial
discretization, consistent schemes can violate the discrete maximum principle, and
hence the mass lumped schemes are more attractive. In this article, we construct a5

fine spatial discretization and use the proposed consistent approach, while restricting
the time step tk from below.

5 Selection of an initial approximation

As it was mentioned previously, selection of a proper initial approximation is crucial to
reduce the number of iterations and more importantly to ensure that the minimization10

procedure converges to a global minimum. In this section we describe how to select a
proper initial approximation. Note that in the natural environment, the thermal proper-
ties and the water content are confined within a certain range varying from soil texture
and mineralogy. Therefore, the coefficients in (2) and hence their initial approximations
lie within certain limits. To ensure better determination of the initial approximation, we15

employ an algorithm utilizing coordinate-wise searching (Bazaraa et al., 1993). This al-
gorithm looks for a minimum along one coordinate, keeping all other parameters fixed,
and then looks for the minimum along another coordinate keeping all others fixed and
so on. We propose a similar algorithm to establish the initial approximation for thermal
properties and water content within each soil horizon.20

We look for a minimum with respect to some parameters in C, followed by a search
along other parameters in C and so on. In details, our approach is formulated in four
steps:

1. Select several time intervals {∆k} in the period of observations [0, τ]

2. Associate a certain subset Cj of parameters C with each ∆j . The subset Cj is25

such that the temperature dynamics over the period ∆j is primarily determined by
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Cj and depend much less on changes in any other parameters in C.

3. Select a certain pair {∆j ,Cj}, and look for a location of the minimum of the cost
function J(C) keeping all parameters in C except for Cj fixed.

4. Update values of Cj in the control C by the results obtained at the step (3) and
repeat step (3) but for another pair {∆i ,Ci}, i 6=j .5

We continue this iterative processes until the difference between the previous and cur-
rent values of parameters in C is below a critical tolerance.

The values of ts and te determining lower and upper limits of integration in (10) are
equal to the beginning and end of the time interval ∆k . The choice of ∆k is naturally
dictated by seasons in the hydrological year, which starts at the end of summer and10

consists of four periods: “winter”, “summer and fall”, “fall” and “extended summer and
fall”. Note that the intervals ∆k can overlap. When the period of observations is one
year, typical intervals ∆k are listed in Table 2. The selected periods ∆k do not have to
coincide with traditional subdivision of a year. For different geographical regions, the
timing for the “winter”, “summer and fall” and “fall” could be different. Typical timing of15

periods {∆k} for the North Slope of Alaska is shown in Table 2, and are now discussed.
∆1 : The “winter ” period corresponds to the time when the rate of change of the un-

frozen liquid water content θl is negligibly small; the heat Eq. (2) models the transient
heat conduction with thermal properties λ=λf , C=Cf , and dθl

dT ' 0. During the “win-
ter”, temperature dynamics depend only on the thermal diffusivity Cf/λf of the frozen20

soil, and hence the simultaneous determination of both parameters Cf and λf is an

ill-conditioned problem. Assuming that the heat capacity {C(i )
f } is known (depending

on the soil texture and moisture content we can approximate it using published data),
we evaluate the thermal conductivity {λ(i )

f } and use these values during minimization at
other intervals.25

∆2 : During thawing and freezing periods an active phase change of soil moisture
occurs, and hence we consider these periods simultaneously and call their union the
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“summer and fall”, see Table 2. In this time interval, a contribution of the heat capac-
ity C into the apparent heat capacity Capp is negligibly small comparing to the con-
tribution of the latent heat term Ldθl/dT . Therefore, during this interval the rate of
freezing/thawing primarily depends on the soil porosity η and the thermal conductivity
λ (Tikhonov and Samarskii, 1963). Note that temperature-dependent latent heat ef-
fects due to the existence of unfrozen water θl at this period have a second order of
magnitude effect (see discussion below). Therefore, the coefficients b, T∗ parameteriz-
ing the unfrozen water content θl can be found by taking into account the soil texture
and analyzing measured temperature dynamics during the beginning of freeze-up (see
Fig. 7). However, we will seek to obtain a better estimates of b, T∗ at the next steps,
namely during the “fall” period. To summarize the above, we conclude that in the “sum-
mer and fall”, the temperature dynamics primarily depends on {λ(j )

t , η
(j )}. Taking into

account the relationship (7) between the thermal conductivities for completely frozen
and thawed soil, we approximate {λ(j )

t } for all soil horizons except for the uppermost
one by

λ(j )
t = λ(j )

f

[λl
λi

]η(j )

, j = 2, . . . , n. (26)

We remind that the water content η(1) in the upper soil horizon is changes over the year
due to moisture evaporation and precipitation, and hence formula (26) does not hold
for j=1. Hence, during the “summer and fall” period we estimate {η(i )}ni=1 and λ(1)

t , and

then calculate thermal conductivity λ(j )
t for the rest of soil layers j=2, . . ., n by (26).

∆3 : Recall that while evaluating the thermal properties {λ(i )
t , λ

(i )
f } and the soil porosity5

{η(i )}, we assumed that the coefficients {b(i ), T (i )
∗ } are known. However they also need

to be determined. Also we remind that the coefficients {b(i ), T (i )
∗ } cannot be computed

prior to calculation of {λ(i )
t , λ

(i )
f } and {η(i )}, since {b(i ), T (i )

∗ } are related to the second
order effects in temperature dynamics during “summer and fall” and “winter” intervals.
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Once an initial approximation to {λ(i )
t , λ

(i )
f } and {η(i )} is established, we consider the

“fall” period (see Table 2) during which the temperature dynamics depends mostly
on {b(i ), T (i )

∗ } and allows us to capture second order effects in temperature dynamics
(Osterkamp and Romanovsky, 1997).
∆4 : In the previous three periods, we obtained approximations to all parameters5

{λ(i )
t , λ

(i )
f , C

(i )
t , C

(i )
f , η

(i )} and the coefficients {b(i ), T (i )
∗ }. We can then improve the ap-

proximation by considering the “extended summer and fall” period, see Table 2. This
period is associated with a time interval when the soil first thaws and then later be-
comes completely frozen. Since previously, we minimized the cost function depending
separately on the porosity {η(i )} (“summer and fall”) and on {T (i )

∗ } (“fall”), we minimize10

the cost function depending simultaneously on {η(i )} and {T (i )
∗ } during “extended sum-

mer and fall”, while other parameters are fixed.
In Table 2, we list all steps and time periods ∆k which are necessary to find the initial

approximation. One of the sequences of minimization steps is

“winter” → “summer and fall” → “fall” → “extended summer and fall”

From our experience with this algorithm, we conclude that in some circumstances it is
necessary to repeat minimization over some time periods several times, e.g.

“winter” → “summer and fall” → “fall” → “extended summer and fall” →
“fall” → “extended summer and fall”

until the consecutive iterations modify the thermal properties insignificantly.

6 Multivariate minimization of the cost function

After the selection of the initial approximation, the next step is to minimize the cost15

function J(C) with respect to all parameters in C. There is a great variety of iterative
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methods that minimize J(C). The majority of them rely on computation of the gradient
∇J(C) of the cost function. The computation of ∇J(C) is a complicated problem and is
out of the scope of this article. An interested reader is referred to (Alifanov et al., 1996;
Permyakov, 2004) and to references therein. Since in this article we are primarily
concerned with evaluation of the initial approximation to the thermal properties, we use5

a simplest universal algorithm to minimize the cost function and do not compute the
gradients ∇J(C). However, this algorithm typically converges to the minimum slower
than other algorithms that require calculations of the gradient (Dennis and Schnabel,
1987).

7 Application – Happy Valley site10

7.1 Short site description

The temperature measurements were taken in the tussock tundra site located at the
Happy Valley (69◦8′ N ,148◦50′ W) in the northern foothills of the Brooks Range in
Alaska from 22 July 2001 until 22 February 2005. We used data from 22 July 2001
until 15 May 2002 to estimate soil properties, and from 15 May 2002 until 22 February15

2005 to validate the estimated properties. The site was instrumented by eleven ther-
mistors arranged vertically at depths of 0.02, 0.10, 0.17, 0.25, 0.32, 0.40, 0.48, 0.55,
0.70, 0.86 and 1.06 meter. The temperature sensors were embedded into a plastic
pipe (the so-called MRC probe), that was inserted into a small diameter hole drilled
into the ground. The empty space between the MRC and the ground was filled with a20

slurry of similar material to diminish an impact of the probe to the thermal regime of
soil. Prior to the installation, all sensors were referenced to 0◦C in an ice slush bath and
have the precision of 0.04◦C. An automatic reading of temperature were taken every
five minutes, then averaged hourly and stored in a data logger memory.

During the installation, soil horizons were described and their thicknesses were mea-25

sured. The soil has three distinct horizons: organic cover, organically enriched mineral
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soil, and mineral soil. The boundaries between the horizons lie at 0.10 and 0.20 me-
ter depth. Our frost heave measurements show that the vertical displacement of the
ground versus the MRC probe is negligibly small at this particular installation site.

In the all following numerical simulations we consider a slab of ground represent-
ing the Happy Valley soil between 0.02 and 1.06 meter depth. For the computational5

purposes, the upper and lower boundary conditions are given by the observed temper-
atures at depth of 0.02 and 1.06 meter. Also in all computations, the temperatures are
compared with the set of measured temperatures at the depths {xi}={0.10, 0.17, 0.25,
0.32, 0.40, 0.48, 0.55, 0.70, 0.86} meter.

7.2 Selection of an initial approximation10

The “winter” period is associated to the ground temperature below −5◦C, occurring on
15 January 2002 through 15 May 2002 at the Happy Valley site. The heat capacity Cf
for each layer is evaluated based on the soil type, texture and is taken from (Hinzman
et al., 1991; Romanovsky and Osterkamp, 1995; Osterkamp and Romanovsky, 1996).
We estimate λf for each layer by looking for the location of a cost function minimum15

in the three dimensional space associated with λ(1)
f , λ(2)

f and λ(3)
f . The minimization

problem in this space can be simplified by looking for a minimum in a series of two-
dimensional problems as follows. For several physically reasonable realizations of the
thermal conductivity λ(1)

f (0.25,0.30,0.35, . . . ,0.75), we compute temperature dynam-

ics for various values of λ(2)
f , λ(3)

f and plot isolines of the cost function J . From the20

series of plots in Fig. 8 we can see that the location of the minimum on the (λ(2)
f , λ

(3)
f )

plane shifts as λ(1)
f changes. The minimum of the cost function at each cross section

is almost the same, and the problem of selecting the right combination of parameters
arises. Here, knowledge of the soil structure becomes relevant. It is known that the soil
type of third layer is silt highly enriched with ice, so from Table 1 1.6<λ(3)

f <2.0. There-25

fore, we select λ(1)
f =0.55, λ(2)

f =1.0 and λ(3)
f =1.8, and use them in all other consecutive
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steps (see Table 3, columns 6, 7 and 8). More precise results could be obtained if a
sensor measuring the thermal conductivity was placed in at least one of the horizons
(preferably the first one).

In our case, the “summer and fall” period is represented by the time interval start-
ing on 28 August 2001 and ending on 6 December 2001. This interval is selected5

to capture the maximal depth of active layer. Based on the soil type and texture, we
assume that b(i )=−0.7, T (i )

∗ =−0.03, i=1,2,3 are a good initial approximation to the co-
efficients in (3) describing the unfrozen water content (also see Fig. 7). We take values
of the heat capacity Ct from (Hinzman et al., 1991; Romanovsky and Osterkamp, 1995;
Osterkamp and Romanovsky, 1996). Also, comparing the measured data to temper-10

ature dynamics computed for values parameters λ(1)
t , {η(i )}3

i=1 varying within a range
of their natural variability, we found that ranges of these parameters are such that
λ(1)
t ∈[0.09,0.15], η(1)∈[0.3,0.9], η(2)∈[0.3,0.9] and η(3)∈[0.15,0.45]. Once, the ranges

of the parameters are established, we can look for a minimum of the cost function in
the four dimensional space associated with λ(1)

t , {η
(i )}3

i=1. We stress again that it is un-15

necessary to find the minimum in this space very accurately but rather only to estimate
its location as significant uncertainties in other parameters still exist.

An approximate solution of the four dimensional minimization problem can be found,
for instance, by evaluating the cost function on (λ(1)

t , η
(1)), (η(1), η(2)) and (η(2), η(3))

planes as follows. We set η(1) = 0.6, η(2)=0.6, η(3) = 0.3 and λ(1)
t =0.12, which cor-20

respond to the middle of their variability ranges. Recall that from minimizing over the
“winter” interval we obtained λ(1)

f =0.55, λ(2)
f =1.0 and λ(3)

f =1.8. The first approximation

to other parameters in control are also known: b(i )=−0.7 and T (i )
∗ =−0.03 are the initial

approximation; λ(i )
t for i=2,3 are computed by Formula (26). Therefore, to evaluate the

cost function on the (λ(1)
t , η

(1)) plane, we vary the parameters λ(1)
t , η

(1) in the control,25

while the other parameters are fixed (η(2)=0.6, η(3)=0.3 just for this plane, see Table 3,
“Summer and Fall” 1st row for values of the rest of parameters). After evaluating the
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cost functions on all three planes, we look for its minima (see Fig. 9, left). At the
(λ(1)
t , η

(1)) plane, the cost function attains its minimal value on a boundary of this plane,

see Fig. 9, upper left, and is minimal in the center of the planes (η(1), η(2)), (η(2), η(3)).
The last two planes allows us to find that η(1)=0.6, η(2)=0.55 and η(3)=0.27, whereas
contours at the first plane show that the value of λ(1)

t lies between 0.11 and 0.13, see5

Fig. 9, left column. We suppose that λ(1)
t is 0.12 and proceed further. After updating

the control with the computed values, we evaluate the cost function on the same set
of planes one more time; parameters in the control before minimization are shown in
Table 3 the “Summer and Fall” 2nd row. After computing the cost function, we draw its
isolines and show them in Fig. 9, right. Note that at this step the cost function attains10

its minima located in the center of the computational grid. We update the control with
η(1)=0.6, η(2)=0.55, η(3)=0.27, λ(1)

t =0.12. Note that the location of the minimum did not
change significantly. Our experience shows that the change of soil properties by 10%
or less is considered to be insignificant, since the difference between soil temperatures
computed with and without changes in parameters is typically comparable with uncer-15

tainties of measurements. Finally, we do not need to complete additional iterations on
the same set of planes, since there are still uncertainties in other parameters. We use
the updated parameters and proceed to the next step, the evaluation of coefficients T∗
and b.

The “fall” period is represented by a time interval which begins when the soil starts20

to freeze and ends when the temperature becomes near −5◦C. In our case this period
begins on 27 October 2001 and ends on 5 January 2002. We recall that from minimiza-
tions at previous intervals (“winter”, “summer and fall”), we obtained that λ(1)

f =0.55,

λ(2)
f =1.0, and λ(3)

f =1.8; λ(1)
t =0.12, η(1)=0.6, η(2)=0.55, and η(3)=0.27, see Table 3, the

“Fall” 1st row. However, to derive these values we used an approximation to the coef-25

ficients parameterizing the unfrozen water content, namely b(i )=−0.7 and T (i )
∗ =−0.03

for i=1,2,3. To compute better approximations to {b(i )} and {T (i )
∗ }, we minimize the
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cost function with respect to {b(i ), T (i )
∗ }3

i=1 during the “fall” interval using approximate

values of the thermal conductivity {λ(i )
f }3

i=1 and porosity {η(i )}3
i=1 from previous results.

Since we need an approximate solution to the minimization problem, we look for the
minimum of J in the (T (1)

∗ , b(1)), (T (2)
∗ , b(2)) and (T (3)

∗ , b(3)) planes1 (see Fig. 10, left). For
example, to compute the cost function on the (T (1)

∗ , b(1)) plane, we vary the values of5

T (1)
∗ , b(1) in the control while other parameters are fixed. We remind that the thermal

properties are obtained in the “winter” and “summer and fall”, and T (2)
∗ =T (3)

∗ =−0.03 and
b(2)=b(3)=−0.7 is the assumed approximation. Computations associated with other
planes are completed similarly, with fixed parameters set equal to their previously
used values. After finding minima, we update the control accordingly to b(1)=−0.7,10

b(2)=−0.6, b(3)=−0.75 and T (1)
∗ =−0.03, T (2)

∗ =−0.03 and T (3)
∗ =−0.03. After updating

the control (see Table 3, the “Fall” 2nd row), we minimize the cost function on the same
sets of planes one more time and obtain that a new set of minima corresponding to
b(1)=−0.7, b(3)=−0.75 and T (1)

∗ =−0.03, T (3)
∗ =−0.03, see Fig. 10 right. However, on the

plane (T (2)
∗ , b(2)), the minimum is attended on the boundary of the region. Therefore, we15

exploit the previous values of the coefficients b(2), T (2)
∗ , namely b(2)=−0.6, T (2)

∗ =−0.03,
and have to consider some additional iterations. These additional iterations are asso-
ciated with the “extended summer and fall” period.

From previous minimizations, we evaluated approximation to all unknown parame-
ters in the control, i.e. λ(1)

t = 0.12, η(1)=0.6, η(2) = 0.55, η(3)=0.27 and b(1)=−0.65,20

b(2)=−0.6, b(3)=−0.75 and T (1)
∗ =−0.02, T (2)

∗ =−0.03, T (3)
∗ =−0.03, see Table 3, the Ex-

tended Summer and Fall 1st row. However, we can improve the quality of our ap-

1Other selection of planes is possible. We emphasize that we are just interested in calcula-
tion of an initial approximation to the control which could serve as a starting point in the global
minimization of the cost function. By no means, do we try to substitute the global minimization
by this heuristic procedure. However, a good starting point can save computational time and
improve accuracy of a final result.
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proximation by repeating minimization processes associated with the “summer and
fall” and “fall” intervals, or by considering the “extended summer and fall” period. In
our case, this period begins on 28 August 2001 when the active layers is developed
and ends when temperature becomes less than −5◦C on 5 January 2002. During
these period we look for the minimum of the cost function with respect to six param-5

eters {η(i ), T (i )
∗ }3

i=1. We propose to select the set of planes (T (1)
∗ , η(1)), (T (2)

∗ , η(2)) and

(T (3)
∗ , η(3)), and minimize the cost function only over them. After the first step, we

find that the minimum is located at η(1)=0.7, η(2)=0.55, η(3)=0.27 and T (1)
∗ =−0.025,

T (2)
∗ =−0.03, T (3)

∗ =−0.03, see Fig. 11 left. After updating the parameters in the control,
we look for a minimum of the cost function on the same sets of planes another time10

in order to check that the minima are coincident. We obtain that η(1)=0.7, η(2)=0.55,
η(3)=0.27 and T (1)

∗ =−0.025, T (2)
∗ =−0.025, T (3)

∗ =−0.03, see Fig. 11 right. Since loca-
tions of the minima did not change significantly between the last two minimizations, we
assume that we converged to some minimum.

7.3 Global minimization and sensitivity analysis15

While evaluating an initial approximation, we sought minimums of the cost functions
J(C) measuring discrepancy over periods {∆k}. In this subsection, we perform global
minimization of the cost function with respect to all parameters in C over the entire
period of measurements 22 July 2001 until 15 May 2002 used for calibration. Also, we
analyze sensitivity of an initial approximation derived from minimizing the cost function20

globally with respect to all parameters.
In global minimization problems, a starting point from which iterations begin is given

by the initial approximation evaluated in the previous subsection, see Table 3, the last
row. In our study we try to look for the minimum of the cost function by the simplex
search method described in (Lagarias et al., 1998), which is a direct search method25

(Bazaraa et al., 1993). In a two and three dimensional spaces, the simplex is a triangle
or a pyramid, respectively. At each iteration the value of the function computed at the
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point, being in or near the current simplex, is compared with the function’s values at the
vertices of the simplex and, usually, one of the vertices is replaced by the new point,
giving a new simplex. The iteration processes is continued until the simplex sizes are
less than an a priori specified tolerance. At the final iteration, we obtain the set of
parameters that determine the thermal properties, porosity and coefficients specifying5

the unfrozen water content for each soil horizon.
It is important to notice that the set of parameters we obtain as a result of global min-

imization problem can depend on values ts and te determining the period over which
discrepancy between observed and modeled temperatures is measured. In global min-
imization problems, the constant te is associated with an end of “winter” interval during10

which the soil is completely frozen. But since, the soil is frozen for several months for
a cold permafrost region, the cost function does not significantly depends on te if te
varies within two week limits. However, the value of ts is associated with beginning
of “summer and fall” interval during which the ground is thawed. Since, the ground is
thawing during a relatively short period of time for cold permafrost regions, we consider15

several values of ts and minimize the cost function with respect to all parameters.
Results of minimization are listed in Table 4. It shows that the initial approximations

do not significantly depend on constants ts, if the interval [ts, te] represents thawed
and frozen states of the soil. Using averaged values of the thermal properties, we
compute the temperature dynamics for the entire period of observations. Comparison20

of the calculated and measured temperatures at different depths and at time intervals
used for calibration are shown in Figs. 12, 13 and 14. During the winter, the calculated
temperature closely follows the observed temperature within the uncertainty of ther-
mistor measurements. During the summer, the difference between the measured and
calculated temperatures is larger but does not exceed 0.3◦C for sensors in the mineral25

soil. This larger discrepancy between the measured and computed temperatures can
be partially explained by over-simplifying physics and neglecting water dynamics in the
upper organic horizons.

Finally, in order to show that the found initial approximation (the last row in Table 3)
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lies close to the true values of soil properties, we use it to compute the soil temperature
dynamics through 22 February 2005. Note that the time interval from 22 May 2002 until
22 February 2005 was not used to find the initial approximation. In Fig. 15, we plot the
measured and calculated temperature dynamics at 0.40 and 0.70 meter depths. The
difference between the calculated and measured temperature dynamics is typically5

less than 0.25◦C, however during the summer it is higher. One of the explanations that
the measured temperatures are higher than the computed ones is that the MRC probe
slightly heaves, and the temperature sensors which was at 0.40 meter depth initially on
22 July 2001 is located several centimeters higher on 22 February 2005.

8 Discussion and limitation of the proposed method10

In this paper we described one of the approaches that can be used to find an initial
approximation to the thermal properties of soil horizons. This technique approximates
the thermal conductivity, porosity, unfrozen water content curve in horizons where no
direct temperature measurements are available. We admit that we find only one of
the possible initial approximations, which can be utilized as the so-called initial edu-15

cated guess in a multivariate minimization problem. However, during evaluation of the
initial approximation, we derive multiple limiting boundaries on parameters which can
serve as constrains during multivariate minimization and hence produce reasonable
estimates of the thermal properties.

One of the limitations of the proposed approach is that it requires values of heat20

capacities, since at certain time periods it is possible to estimate thermal diffusivity
only but not thermal conductivity and heat capacity separately.

It should be noted that recovery of the thermal properties of the organic cover
(e.g. moss layer) is given as an integrated approach in the following sense. Com-
plex physical processes occurring in the organic cover that include non-conductive25

heat transfer (Kane et al., 2001) are taken into account by estimating some effective
thermal properties which are constants for the entire season. We acknowledge that
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the estimated thermal properties of the organic layer could be different in nature, but
we recover them in such a way that the temperature in the active layer and permafrost
should correspond to the measured one.

In the proposed model we used 1-D assumption regarding the heat diffusion in the
active layer, which sometimes is not applicable due to hummocky terrain in the Arctic5

tundra. Another assumption used in the model is that frost heave and thaw settlement
is negligibly small and there is no ice lens formation in the ground during freezing.
Therefore, the proposed method could be only applied where these assumption are
satisfied.

The proposed method allows computation of a volumetric content η of water which10

changes its phase during freezing or thawing. Water content of liquid water that is
tightly bound to soil particles and is not changing its phase can not be estimated within
the proposed model (2).

9 Conclusions

We developed an approach to calculate an approximation to soil porosity and thermal15

properties in order to use it as the initial guess in commonly exploiting data assimi-
lation techniques. To compute the approximation, we minimize the multivariate cost
function describing discrepancy between the measured and calculated temperatures
over a certain time interval. We find the minimum by adopting a coordinate-wise iter-
ative search technique to the specifics of our inverse problem. At each iteration, we20

select a particular set of soil properties and associate with them a certain time interval
over which we minimize the cost function. After employing the proposed sequence
of iterations, it is possible to find the approximation to all thermal properties and soil
porosity.

Although there are several limitations to the proposed approach, we applied it to25

recover soil properties for Happy Valley site near Dalton highway in Alaska. The differ-
ence between the simulated and measured temperature dynamics over the periods of
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calibration is typically less than 0.3◦C. The difference between the simulated and mea-
sured temperatures over the consecutive time interval not used in calibration is less
than 0.5◦C which shows a good agreement with measurements, and validates that the
found initial approximation lies close to the true values of soil properties.

In order to compute the cost function, it is necessary to calculate the soil temperature5

dynamics. Therefore, we developed a new finite element discretization of the Stefan-
type problem on fixed coarse grids using enthalpy formulation. One of the advantages
of the new method is that it allows computation of the temperature dynamics for the
classical Stefan problem without any smoothing of the enthalpy. Also, new approach
shows equal or better performance comparing to other finite element models of the10

ground thawing and freezing processes.
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Table 1. A typical thickness of soil layers and commonly occurring range of thermal properties
in a cryosol soil at the North Slope, Alaska.

Layer Layer thickness Thermal conductivity Porosity, Coefficient in (3)
in the frozen state, λf η b

Moss or organic layer 0.05 [0.1,0.5] [0.1,0.7] [−1,−0.5]
Mineral-organic mixture 0.20 [0.7,1.5] [0.2,0.6] [−0.8,−0.5]
Mineral soil > 1.0 [1.3,2.4] [0.2,0.4] [−0.7,−0.5]
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Table 2. Typical choice of parameters in the control C for “cold” permafrost regions.

Periods Cj Typical ∆k Characteristic Step

“Winter” {λ(i )
f } December–April Completely frozen ground, T<−5◦C 1

“Summer and Fall” {η(i )},λ(1)
t May–November Developing/-ed active layer and its freezing 2

“Fall” {b(i ), T (i )
∗ } September–December Active layer freezing, T>−5◦C 3

“Extended Summer and Fall” {η(i ), T (i )
∗ } May–January Developing/-ed active layer and its freezing 4
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Table 3. Values of the parameters in the control at the beginning of each minimization step. The
parameters which values are in the parenthesis with the same subindex define minimization
plane. For example, in the third row λ(1)

t and η(1) are in the parenthesis and have the same

subindex equal to 1. Therefore, this pair define a minimization plane (λ(1)
t , η

(1)). On this plane

we minimize the cost function depending on λ(1)
t and η(1), while value of other parameters are

fixed and given in other sections of the current row.

Iterations η(1) η(2) η(3) λ(1)
t λ(1)

f λ(2)
f λ(3)

f b(1) b(2) b(3) T (1)
∗ T (2)

∗ T (3)
∗

Winter 0.40 0.70 0.25 0.10 – – – −0.7 −0.7 −0.7 −0.03 −0.03 −0.03
Summer and Fall, 1st (0.60)1,2 (0.60)2,3 (0.30)3 (0.12)1 0.55 1.00 1.80 −0.7 −0.7 −0.7 −0.03 −0.03 −0.03
Summer and Fall, 2nd (0.60)1 (0.55)1,2 (0.27)2,3 (0.12)3 0.55 1.00 1.80 −0.7 −0.7 −0.7 −0.03 −0.03 −0.03

Fall, 1st 0.60 0.55 0.27 0.12 0.55 1.00 1.80 (−0.7)1 (−0.7)2 (−0.7)3 (−0.03)1 (−0.03)2 (−0.03)3
Fall, 2nd 0.60 0.55 0.27 0.12 0.55 1.00 1.80 (−0.7)1 (−0.6)2 (−0.75)3 (−0.03)1 (−0.03)2 (−0.03)3

Ext. Summer and Fall 1st (0.60)1 (0.55)2 (0.27)3 0.12 0.55 1.00 1.80 −0.65 −0.6 −0.75 (−0.02)1 (−0.03)2 (−0.03)3

Ext. Summer and Fall 2nd (0.70)1 (0.55)2 (0.27)3 0.12 0.55 1.00 1.80 −0.65 −0.6 −0.75 (−0.025)1 (−0.03)2 (−0.03)3

Final Result 0.70 0.55 0.27 0.12 0.55 1.00 1.80 −0.65 −0.6 −0.75 −0.025 −0.025 −0.03
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Table 4. Global minimization with respect to all parameters in the control. Each realization is
specified by the time interval [ts, te] over which the discrepancy between the data and computed
temperature dynamics is evaluated. In all case, the constant te is associated to the ...

ts η(1) η(2) η(3) λ(1)
t λ(1)

f λ(2)
f λ(3)

f b(1) b(2) b(3) T (1)
∗ T (2)

∗ T (3)
∗

18 August 0.703 0.560 0.272 0.120 0.562 0.983 1.797 −0.655 −0.596 −0.750 −0.0251 −0.0253 −0.0301
22 August 0.721 0.557 0.272 0.122 0.559 0.973 1.809 −0.673 −0.558 −0.757 −0.0256 −0.0249 −0.0295
26 August 0.718 0.546 0.272 0.122 0.559 0.962 1.801 −0.657 −0.597 −0.755 −0.0250 −0.0251 −0.0303
30 August 0.712 0.549 0.272 0.121 0.556 0.967 1.801 −0.655 −0.601 −0.755 −0.0251 −0.0251 −0.0302

3 September 0.712 0.544 0.274 0.123 0.559 0.980 1.816 −0.665 −0.551 −0.750 −0.0255 −0.0255 −0.0298
7 September 0.718 0.534 0.274 0.123 0.560 0.966 1.789 −0.660 −0.603 −0.747 −0.0250 −0.0252 −0.0297
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Fig. 1. Isolines of the cost function J(C) computed using the synthetic temperature data TS. The
minimum of the cost function is marked by the start and is located at λ(2)

f =0.9 and η(3)=0.25,

which is coincide with the values of λ(2)
f , η

(3) used to compute TS.
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Fig. 2. Typical volumetric content of the unfrozen liquid water in soils as a function of temper-
ature. The curve marked by triangles is associated with soils in which all water is bound in soil
pores, and hence the water content gradually decreases with decreasing temperature in ◦C.
The curve marked by circles is related to soils in which some percentage of water is not bound
to the soil particle and changes its phase at the temperature T∗, while other part of liquid water
is bound in soil pores and freezes gradually as the temperature decreases.
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Fig. 3. Comparison of analytical (stars) and numerical solutions. Initially, the soil has −5◦C tem-
perature, and at the time t=0, the temperature at its upper boundary is changed to 1◦C. At the
lower boundary located at 5 meter depth, zero flux boundary condition is specified. On the left
plot, we show a location of the 0◦C isotherm calculated for a uniform spatial discretizations with
0.1 m grid element. The numerical solutions are computed by the proposed method (circles)
and by the scheme using the lumped approach with temporal enthalpy averaging (squares).
On the right plot, we show a location of the 0◦C isotherm calculated for a uniform spatial dis-
cretizations with 0.1 m (filled) and 0.01 m (hollow) grid elements.
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Fig. 4. Temperature dynamics at 0.3 meter depth computed by the consistent (circles) and
mass lumped approaches (squares, triangles). The temperatures marked by squares and tri-
angles are calculated by mass lumped approach with temporal (squares, TA) and spatial (trian-
gles, SA) enthalpy averaging and with a uniform 0.1 m spatial discretization. The temperature
computed by the consistent approach (circles) was evaluated on a uniform grid with 0.01 m ele-
ments. Initially the temperature is zero, the upper boundary condition is given by Dirichlet type
boundary condition with a slowly varying sinusoid having the amplitude of 3◦C and the period
of there years; zero heat flux is specified at 2 meter depth.
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Fig. 5. Temperature dynamics at 1 meter depth computed by the proposed consistent (circles)
and the mass lumped schemes (stars). The mass lumped scheme is based on (25). In order
to emphasis numerical oscillations occurring in the case of small time steps in the consistent
approach, we use a uniform grid with 0.1 m grid elements. The oscillations are due to viola-
tion of the discrete maximum principle in the consistent scheme during active phase change
processes. The initial and boundary conditions are the same as stated in caption of Fig. 4.
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Fig. 6. Temperature dynamics at 1 meter depth computed by the consistent approach (circles),
the proposed mass lumped approach (stars) and the mass lumped approach with temporal
enthalpy averaging (squares). The temperatures computed mass lumped approach are found
on uniform grid with 0.1 m grid elements, whereas in the consistent approach, the length of grid
elements is 0.01 m. The initial and boundary conditions are the same as stated in caption of
Fig. 4.
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Fig. 7. Temperature dynamics at 0.25 meter depth at Happy Valley site during the summer
of 2001 year. The temperature of T∗ soil freezing depression can be estimated to be within
temperature interval [−0.04◦C 0◦C].
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Fig. 8. The isolines of the cost function J on the plane (λ(2)
f , λ

(3)
f ) for different values of the

thermal conductivity λ(1)
f keeping constant at each plot. The values of λ(1)

f from the left to
the right are 0.35, 0.55 are 0.70, respectively. The star in the central plot marks a selected
combination of the thermal conductivities.
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Fig. 9. Selection of the thermal conductivity λ(1)
t and the soil porosity η(1), η(2), η(3) by minimizing

the cost function associated with the “summer and fall” interval. The left and right column
are associated with the first and the second iterations, respectively. The stars mark selected
values of parameters after completing the iteration. Note that at the second iteration stars and
locations of all minima are coincide.
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Fig. 10. Selection of the coefficients {T (i )
∗ , b

(i )}3
i=1 (parameterizing the unfrozen water content)

by minimizing the cost function associated with the “fall” interval. The left and right column are
associated with the first and the second iterations, respectively. The stars mark selected values
of parameters after completing the iteration.
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Fig. 11. Selection of the parameters {η(i ), T (i )
∗ }3

i=1 by minimizing the cost function associated
with the “extended summer and fall” interval. The left and right column are associated with the
first and the second iterations, respectively. The stars mark selected values of parameters after
completing the iteration.
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Fig. 12. Measured (hollow) and calculated (solid) temperature at 0.10, 0.17 and 0.25 meter
depth. The time interval is associated with the “summer and fall” period.
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Fig. 13. Measured (hollow) and calculated (solid) temperature at 0.32, 0.48, and 0.70 meter
depth. The time interval is associated with the “winter” period.
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Fig. 14. Measured (hollow) and calculated (solid) temperature at 0.55, 0.70 and 0.86 meter
depth during the entire period of measurements used for calibration.
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Fig. 15. Measured (hollow) and calculated (solid) temperature at 0.40 and 0.70 meter depth
during the entire period of measurements.
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